In vivo 3D human vocal fold imaging with polarization sensitive optical coherence tomography and a MEMS scanning catheter
نویسندگان
چکیده
We present in-vivo 3D human vocal fold images with polarization sensitive optical coherence tomography (PS-OCT). Characterizing the extent and location of vocal fold lesions provides useful information in guiding surgeons during phonomicrosurgery. Previous studies showed that PS-OCT imaging can distinguish vocal fold lesions from normal tissue, but these studies were limited to 2D cross-sectional imaging and were susceptible to sampling error. In-vivo 3D endoscopic imaging was performed by using a recently developed 2-axis MEMS scanning catheter and a spectral domain OCT (SD-OCT), running at 18.5 frames/s. Imaging was performed in the operating room with patients under general anesthesia and 3D images were acquired either by 2D scanning of the scanner on the sites of interest or by combining 1D scanning and manual sliding to capture whole length of the vocal fold. Vocal fold scar, polyps, nodules, papilloma and malignant lesions were imaged and characteristics of individual lesions were analyzed in terms of spatial distribution and variation of tissue structure and birefringence. The 3D large sectional PS-OCT imaging showed that the spatial extent of vocal fold lesions can be found non-invasively with good contrast from normal tissue.
منابع مشابه
Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography.
A two-axis scanning catheter was developed for 3D endoscopic imaging with spectral domain optical coherence tomography (SD-OCT). The catheter incorporates a micro-mirror scanner implemented with microelectromechanical systems (MEMS) technology: the micro-mirror is mounted on a two-axis gimbal comprised of folded flexure hinges and is actuated by magnetic field. The scanner can run either static...
متن کاملTwo-axis MEMS Scanning Catheter for Ultrahigh Resolution Three-dimensional and En Face Imaging.
Ultrahigh resolution two and three-dimensional optical coherence tomography (OCT) imaging was performed using a miniaturized, two-axis scanning catheter based upon microelectromechanical systems (MEMS) mirror technology. The catheter incorporated a custom-designed and fabricated, 1-mm diameter MEMS mirror driven by angular vertical comb (AVC) actuators on both an inner mirror axis and an outer,...
متن کاملHigh-speed polarization sensitive optical frequency domain imaging with frequency multiplexing.
Polarization sensitive optical coherence tomography (PS-OCT) provides a cross-sectional image of birefringence in biological samples that is complementary in many applications to the standard reflectance-based image. Recent ex vivo studies have demonstrated that birefringence mapping enables the characterization of collagen and smooth muscle concentration and distribution in vascular tissues. I...
متن کاملUltrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology
We developed a micromotor based miniature catheter with an outer diameter of 3.2 mm for ultrahigh speed endoscopic swept source optical coherence tomography (OCT) using a vertical cavity surface-emitting laser (VCSEL) at a 1 MHz axial scan rate. The micromotor can rotate a micro-prism at several hundred frames per second with less than 5 V drive voltage to provide fast and stable scanning, whic...
متن کاملRobotics as a Future and Emerging Technology
Real-time in-vivo forward-viewing optical coherence tomography imaging has been demonstrated with a novel lens scanning based MEMS endoscope catheter. An endoscopic catheter with an outer dimension of 7 mm x 7 mm has been designed, manufactured and assembled. By employing high-speed spectral domain optical coherence tomography, in-vivo two-dimensional cross-sectional images of human skin tissue...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2010